NE ZAMUDITE  


 Rubrike  

 Zanimivo  


 Bodi obveščen ? 

Sončna Pošta:
Brezplačne pozitivne novice, članke, zgodbe, recepte, informacije o zaposlitvah, razpisih in obvestila o seminarjih ter delavnicah lahko dobivaš tudi na dom.


Vpiši se ali pošlji email na: info@pozitivke.net.
Sončno pošto tedensko na dom dobiva okoli 2.500 bralcev.


 Ne spreglejte  


 SVET POEZIJE  

Klikni sliko za vstop v svet poezije.


 Aktualno  


 Mesečni koledar  
Dogodki te strani

petek 06-dec
  • Drsanje v Ledni dvorani Tabor

  • sobota 07-dec
  • Dedek Mraz v Mariboru

  • ponedeljek 09-dec
  • Po vrvi do svetlobe

  • torek 10-dec
  • Odprtje razstave ameriškega uličnega umetnika Johna Feknerja

  • sreda 11-dec
  • Sledi preteklosti: Tanka črta

  • sobota 14-dec
  • Sosednja soba

  • nedelja 15-dec
  • Vegan Hangouts: Prednovoletno druženje v božičnih puloverjih

  •   Več o dogodkih  
    Preglej vse dogodke v tem letu


    Latentno vesolje 5.del - Masa   
    torek, 12. julij 2005 @ 06:21 CEST
    Uporabnik: Franc Rozman

    * Poučna (spo)znanja, znanost

    Vase sklenjeno energijsko nihanje ustvari snov in snovi pripadajočo maso.

    Einstein ugotavlja, da se energija lahko pojavi v obliki mase. Masa je po Einsteinu oblika energije. Masa po Einsteinu vsebuje E= mc2 količino energije.

    Prejšnje poglavje govori o vezalnih energiji, ki soustvarja snovne delce. Vezalna energija je negativna oblika energije, je antienergija.

    Vezalne energije in ujetosti snovnih gradnikov se na primer dogajajo na nivoju majhnih delcev. Elektron je ujetnik atoma. Protone in nevtrone vezalna energija povezuje v atomsko jedro. Kvarki so na podoben način povezani v protone in nevtrone.

    Tudi planete vezalna energija povezuje s Soncem. Planeti so ujetniki Sonca, sončni sistem je ujetnik galaksije.

    Masa pomeni ujeto energijo in antienergijo.

    Ko razmišljam o Einsteinovi enačbi E= mc2 moram torej razmišljati o energiji, ki jo vsebuje masni delček, pa tudi o vezalni energiji to je negativni energiji tega masnega delčka.

    Zlom prostora je razpad "niča" v maso (energijo in antienergijo)

    Razmišljanje o prepletanju energije in antienergije v masnem delčku naj začnem na nivoju najmanjših snovnih delcev.

    Albrecht Giese je opisal fizikalni pojav, ki ga imenuje zlom prostora in pojasnjuje, kako iz praznega prostora nastajajo masni delci.

    Pri zlomu prostora iz praznega prostora, prostora ki pred zlomom ne vsebujejo niti mase niti energije, nastaja energija in negativna energija (antienergija). Energija in antienergija skupaj ustvarita energijsko tvorbo, ki jo opažamo v obliki snovi.



    Nihče, ki ni dovolil, da bi se smejali na njegov račun, se še ni proslavil.

    Marie Edgeworth

    Kvark

    Domnevno matematično predstavo o omenjenem zlomu prostora nudi tudi porajajoča se teorija strun. Najmanjše do sedaj poznane delce (kvarke) po teoriji strun lahko razumemo kot energijske vrtince ali energijske vozle, zgolj kot vozlanje energijskega in antienergijskega polja.

    Ko prehajamo k vse manjšim in manjšim snovnim tvorbam, ni nujno, da v vsaki tvorbi kot gradnik neke snovne tvorbe nastopa snovni delec, na primer elektron, ki se veže na atomsko jedro.

    Pri najmanjših delcih, se lahko dogodi, da se preprosto med seboj zavozlata energijsko in antienergijsko polje, tako kot prikazuje slika 5.1

    Zasuk energijske ravnine

    Kaj se dogaja na nivoju najmanjših delcev ni merljivo, zato si predstavo o dogajanju skušam ustvariti na različnih modelih.

    Enega od načinov predstave o zlomu prostora si lahko zamslim na način, ki ga prikazuje slika 4.3 (Antienergija). Predstavljam si, da se del energijske ravnine na sliki 4.3 vrti okrog osi x in s tem povzroči nihanje energije in antienergije v neki izbrani točki, na primer na način, kot to kaže slika 5.1.

    Načini interpretacije najmanjšega snovnega delca so lahko naslednji:
    · model, ki si ga je zamislil Albrecht Giese,
    · model energijskega in antienergijskega vozla prikazan na sliki 5.1 ali
    · model kroženja dela energijske ravnine na sliki 4.3

    Vsi navedeni modeli prikazujejo energijsko navezo energije in antienergije.

    Povezana energije in antienergije v skupni vozel pomeni tako medsebojno povezavo, da se ne energija in antienergija ne moreta ločiti. Tak skupni vozel lahko predstavlja osnovni snovni delček.

    Energijsko-antienergijske singularnosti

    V nadaljevanju me zanima količina energije in antienergije v takem, prostorsko zaokroženem energijskem vozlu oziroma nihanju, ki ga opazim kot snovni delček.

    Ko se energijsko-antienergijski vozli, ki ustvarjajo snovni delček, povežejo v večje snovne oblike, kvarki v nukleone, nukleoni v atomska jedra itd, dobimo energijsko-antienergijske vozle bolj kompleksnih oblik.

    Dobimo atome, molekule, snovne delce, planete, galaksije. Še vedno so to energijsko-antienergijski vozli raznih oblik, kompleksnosti in velikosti.

    Shemo energijskega vozla na sliki 5.1 lahko uporabim tako na nivoju kvarkov, protonov in nevtronov, atomskih jeder do galaksij, kadar me zanimajo predvsem energijsko stanje neke snovne oblike, manj pa oblika.

    Take tvorbe, take povezave energije in antienergije lahko razumem kot energijske in antienergijske singularnosti v prostoru.

    Najmanjši snovni delci

    Ker je sistem povezovanja delcev iz gledišča energijskih zakonitosti podoben na vseh nivojih povezovanja, ni pomembno, ali so kvarki najmanjši snovni delci ali se zlom prostora dogodi mogoče še na manjših delcih, kot so kvarki.

    Na nivoju najmanjših snovnih delcev je tak vozel le eden, sestavljen iz energijskih in antienergijskih polj, na višjih nivojih, na nivoju atomov, molekul, snovnih delcev, pa je v taki energijsko-antienergijski singularnosti povezujejo združenja takih vozlov nižjih nivojev.

    Vsak snovni delček vsebuje energijo in antienergijo.

    Snov torej vsebuje energijo in antienergijo, ki jo opazimo v obliki vezalnih energij.

    Čeprav sta si pozitivna in negativna oblika energije (energija in antienergija) v snovnih delcih zelo blizu, se ne zlijeta. Ves čas v atomu obstajata vsaka za sebe, vsaka s svojimi lastnostmi, pojavnimi oblikami in načinom delovanja.

    Energijske in antienergijske singularnosti, kot jih predstavljajo snovni delci, v svoji okolici ustvarjajo energijsko polje, tako kot prikazuje slika 2.9 v poglavju Energija.

    Matematični model kakršne koli energijske singularnosti pokaže, da energija zavzame minimalno energijsko vrednost tako, da okrog singularnosti ustvari energijsko polje oblike, ki jo kaže slika 2.9.

    V oklici snovnega delca torej lahko pričakujemo energijsko polje kot posledico v snovi vsebovane energije in antienergijsko polje kot posledico v snovi vsebovane vezalne energije.

    Energija se v prostoru razporeja z omejeno hitrostjo

    V miselnem poskusu masni delček pospešim. Pospešim delček okrog katerega glede na predhodne ugotovitve pričakujem energijsko in antienergijsko polje.

    V izhodišču tak masni delček obdaja energijsko in antienenrgijsko polje v obliki krogle. Ko masni delček sunem (pospešim), se energijsko in antienenrgijsko polje masnega delca razpotegne, tako kot kaže slika 5.2. S pospeševanjem snovnega delca, delček izmaknemo iz sredine njemu lastnega energijskega polja.

    Energijsko polje novi lokaciji snovnega delca torej ne sledi hipno.

    Energijsko polje masni delček dohiti, ko masni delček neham pospeševati in šele po nekem sicer kratkem času. Ko masni delček ne pospešuje energijsko polje po določenem času ponovno dobi obliko krogle.

    Odziv snovnega delčka na sunek

    Energijsko polje se na odmik delčka (energijske singularnosti) iz središča lastnega energijskega polja odzove na dva načina:
    · Ustvari nasprotno silo, ki skuša delček ohraniti na začetni lokaciji, v središču izhodiščnega energijskega polja.
    · Sočasno se polje začne preoblikovati in slediti novi lokaciji delčka v smislu minimalnega energijskega stanja.

    Newton je ugotovil, da se masni delec upira pospeševanju s silo, ki je enaka F=m.a. (sila je masa krat pospešek)

    Enačba pove, da pri enakomernem premočrtnem gibanju energijsko polje masnega delca zlahka sledi spremembam lokacije delčka, brez delovanja proti sile. Energijsko polje se razpotegne pri pospešenem gibanju snovnega delca.

    Centripetalna sila

    Poseben primer pospešenega gibanja je kroženje mase. Centripetalna sila, ki deluje na maso, je posledica stalnega radialnega pospeška tega delca, s tem pa stalne izmaknjenosti masnega delca iz središča lastnega energijskega polja.

    Starost ni odvisna od let. Leta nagubajo kožo, pomanjkanje radovednosti pa dušo.

    General Douglas McArthur

    Energijsko in antienergijsko polji delujeta avtonomno.

    Opazna sila, ki se upira pospeševanju neke mase izhaja iz energijskega in antienergijskega polja tega delca.

    Snovni delec je energijska in antienergijska singularnost in s tem izvor energijskega in antienergijskega polja okrog delca, zato se postavi vprašanje, kako učinkujeta enenrgijsko in antienenrgijsko polje drug na drugega. Hipotetično lahko predvidimo naslednje možnosti njunega medsebojnega učinkovanja:
    · Energijsko in antienenrgijsko polje sta lahko popolnoma avtonomna in med seboj ne učinkujeta, ali
    · energijsko in antienergijsko polje se med seboj izničujeta zaradi nasprotnih usmerjenosti.

    Znanost bo nekoč našla jasen odgovor na to vprašanje.

    Moč opažene sile v primeru pospeševanja pa že danes daje prednost prvi varianti, ki pravi: energijsko in antienergijsko polje snovnega delca obstaja avtonomno. Vsako za sebe prispeva svoj del k ustvarjanju mase snovnega delčka.

    Sila, potrebna za pospeševanje, ki je pokazatelj mase, je torej domnevno vsota delovanja energijskega in antienergijskega polja.

    Einstein v svoji enačbi E=mc2 ne omenja antienergije.

    Vsaka sprememba energije ali antienergije v neki snovi torej pomeni spremembo njene mase.

    Če je masa rezultat v snovi vsebovane energije in antienergije, se pojavi vprašanje, kako si v teh novih okoliščinah lahko predstavljamo Einsteinovo enačbo E=mc2.

    Če je masa posledica skupnega delovanja (vsote) energijskega in antienergijskega polja, izhajajočega iz mase snovi, potem tudi Einsteinovo enačbo lahko dopolnim v obliki vsote absolutnih vrednosti energije in antienergije: abs(Ep) + abs(En) = mc2, kjer Ep pomeni absolutno vrednost pozitivne oblike energije v opazovani snovi, En pa absolutno vrednost antienergije.

    Energija E v Einsteinovi enačbi lahko predstavlja torej vsoto absolutnih vrednosti količin v snovi vsebovane energije in antienergije.


    Primarni vesoljski delci

    Razmišljanje o energiji in antienergiji snovnega delčka je lahko dokaj akademsko razmišljanje, lahko pa nam daje odgovore na še nerešena fizikalna vprašanja.

    Fizika ima namreč še kar nekaj nepojasnjenih fizikalnih ugank.

    Prof. dr. Janez Strnad v članku "Kdo bo spodnesel teorijo relativnosti" omenja vstopanje zelo hitrih delcev v našo atmosfero. Te delce imenuje primarni vesoljski delci.

    Primarni vesoljski delci so atomska jedra, predvsem vodikova jedra, ki v našo atmosfero vstopajo z izredno veliko hitrostjo in s tem z zelo veliko kinetične energije.

    Delci, čeprav so to masno zelo majhni delci, naj bi po opažanjih fizikov imeli takšno energijo, kot če bi kilogramsko utež spustili z metra višine ali celo višje.

    Nikdar naj vas ne bo strah imeti lastnega mnenja. Začrtajte si pot in se je držite. To je vse.

    A.C.W. Harmsworth

    V Argentini obstaja observatorij "Pierre Auger". ki že več let spremlja vstopanje primarnih vesoljskih delcev v našo atmosfero.

    V vrhnjih plasteh ozračja primarni vesoljski delci z veliko hitrostjo in energijo udarijo v atome zraka (kisika, dušika) in s tem povzročijo plaz sekundarnih vesoljskih delcev.

    Količina vpadne energija primarnih vesoljskih delcev je nepredstavljiva.

    Energijo, ki naj bi jo imeli ti primarni vesoljski delci je tako velika, da jo je težko utemeljevati. Ni pojasnila, kako bi delci takšno hitrost in takšno energijo sploh lahko dosegli. Če pa bi jo nekje na nek nepojasnjen način kljub vsemu le dosegli, pa ni pojasnila, kako bi to neznansko veliko hitrost in energijo na daljših razdaljah na poti proti Zemlji lahko zadržali.

    Del opažene energije prinaša delček s seboj, del energije pa delec pridobi pri trku ob atome v zraku.

    Energija, ki jo opazimo in izmerimo ob vpadu hitrega delca, je izmerjena. O izmerjeni količini energije ob padcu hitrega delca torej ni dvoma.

    S tem pa ni nujno, da vso izmerjeno količino energije delec prinaša s seboj iz vesolja. Dopustiti moramo možnost, da del energije delček prinese s seboj, del energije pa si hitri delček pridobi kasneje v procesu trkanja delca v težje atome zraka.

    Pri velikem pospešku se atomsko jedro izmakne iz središča lastnega energijskega polja.

    Snovni delec, ki predstavlja energijsko singularnost, se izmakne iz središča njemu lastnega energijskega polja, kadar ga pospešimo, tako kot prikazuje slika 5.2 na začetku tega poglavja.

    Jedro energijske singularnosti, na primer atomsko jedro vodika, se lahko bolj ali manj izmakne iz središča njemu lastnega energijskega polja, kot kaže slika 5.3.

    Pri manjših pospeških snovnega delca je odmik delca iz središča njegovega lastnega energijskega polja manjši kot pri velikih pospeških.

    Masa snovi je odvisna od pospeška.

    S kakšno silo energijsko polje deluje na snovni delec, je odvisno od tega, kako tesno je snovni delec v stiku s svojim energijskim poljem.

    Če je snovni delec približno v središču lastnega energijskega polja, potem silo, ki deluje na delec določa Newtonov zakon F=m.a.

    Kadar pa se delec (atomsko jedro vodika) zaradi velikih pospeškov bolj oddalji od lastnega energijskega polja, kot to kaže slika 5.4, pa to oddaljeno polje na delec deluje manj učinkovito, kot v primeru, kadar je delec v neposrednem stiku z lastnim energijskim poljem.

    Delec na nek način pobegne lastnemu energijskemu polju.

    Vpliva energijskega polja, ki pripada masnemu delcu, na oviranje pospeševanja masnega delca označujemo kot njegovo maso.

    m = F/a

    Masa snovi je torej kazalnik, s kakšno silo moramo delovati na nek delec, da mu vsilimo določen pospešek.

    Ko pospeški delcev postanejo veliki se delček vse težje brani pred pospeški.

    Pri velikih pospeških ima obkrožajoče polje delca zaradi popačitve, prikazane na sliki 5.4 manjši vpliv na oviranje pospeševanja tega delca, kot pri manjših pospeških.

    Pri velikih pospeških se delec vse teže brani pospeškov.

    To zmanjšano sposobnost oviranja pospeševanja s strani njemu lastnega energijskega polja lahko izrazimo, kot zmanjševanje mase snovnega delca v času velikih pospeškov, kot odvisnost mase masnega delca od lastnega pospeška.

    To ugotovitev lahko zapišemo tudi v dopolnjenem Newtonovem zakonu, ki se v dopolnjeni obliki glasi:

    F

    Sila, ki je potrebna za pospeševanje nekega delca je manjša ali enaka produktu mase delca pri majhnih hitrostih in pospeška. Ne enačaj postane aktualen pri velikih pospeških.

    Vodikovo jedro se lahko odbije na različne načine.

    Ko na primer lahko vodikovo jedro na sliki 5.5 z veliko hitrostjo prileti iz vesolja in se zaleti v precej težje jedro kisikovega atoma, je ta trk lahko močan, lahko pa se jedri le oplazita.

    Kadar se atoma le neznatno oplazita, takrat ne pride do velikih pospeškov. Ta oblika trka je za nadaljnje razmišljanje manj zanimiva.

    Za nadaljnje razmišljanje je zanimiv trk, ko se hitro vodikovo jedro v kisikovo (ali dušikovo) jedro zaleti pod takim kotom, da pride do velikih pospeškov vodikovega jedra.

    Pri odboju hitrega vodikovega jedra od kisikovega jedra so pospeški lahko tako veliki, da se energijsko polje hitrega vodikovega jedra zelo oddalji od jedra.

    Dve fazi trka.

    Da bi dogajanje ob trku jeder lažje razumel, trk časovno razdelim v fazo trka, ko pospešek vodikovega jedra narašča in drugo fazo, ko se pospešek zmanjšuje. Na sliki 5.6 oba dela trka ločuje črtkana črta na časovni osi.

    V prvem delu trka, v času pred črtkano črto, je energijsko polje vodikovega jedra dokaj urejeno ob jedru in še nepopačeno, kot kaže leva stran slike 5.3.

    Skladnost energijskega polja okrog hitrega vodikovega jedra se učinkovito upira pospeškom jedra.
    V drugem delu trka, ko je energijsko polje hitrega vodikovega jedra vse bolj razpotegnjeno in popačeno, kar prikazuje desna stran slike 5.3 oziroma slika 5.4. Takšno polje manj učinkovito brani jedro pred pospeški.

    Manjšo sposobnost energijskega polja pri varovanju jedra pred pospeški lahko razumem kot zmanjšanje mase vodikovega jedra v drugi fazi trka na sliki 5.6 v primeru velikih pospeškov.

    Proti nejasni prihodnosti stopaj brez strahu in možatega srca.

    Henry Wadsworth Longfellow

    Zmanjšanje mase kasni za maksimalnim pospeškom.

    Zmanjšanje mase vodikovega jedra pri trku kasni za največjim pospeškom, tako kot prikazuje diagram na sliki 5.6.
    Jedro kisikovega atoma v drugem delu trka, ko je masa vodikovega atoma zmanjšana, dokaj učinkovito z manjšim sunkom sile odrine vodikovo jedro.

    Za kratek čas zmanjšana masa vodikovega jedra omogoča, da ga kisikovo jedro odrine celo z večjo hitrostjo, kot je bila vpadna hitrost vodikovega jedra.

    Trk

    Ugotovitev je dokaj drzna, zato se ji posvetim s še nekaj razmišljanji.

    Postavim se na mesto trka tako, da je energija, izhajajoča iz horizontalne hitrosti prihajajočega vodikovega jedra enaka energiji z druge strani prihajajočega kisikovega jedra.

    V tem sistemu opazovanja bi v okoliščinah brez velikih pospeškov lahko pričakoval simetrični odboj.

    Pri majhnih hitrostih in pospeških se vpadna hitrost obeh jeder po odboju ohranja, v nasprotni smeri.

    Ker vodikovo jedro v drugi fazi odboja nudi kisikovemu jedru nudi manjši odpor, kot v prvi fazi odboja (pospeški za kratek čas vplivajo na maso vodikovega jedra) je hitrost kisikovega jedra, prikazana na sliki 5.7, po odboju manjša od vpadne hitrosti.

    S tem se je hitrost in energija kisikovega jedra zmanjšala.

    Hitrost vodikovega jedra pa se poveča zaradi začasno zmanjšanja mase vodikovega jedra, kot to kaže slika 5.7.

    Sunek sile

    Opisano dogajanje si skušam ponazoriti na čim bolj razumljivem modelu, na primer na takem, kot ga prikazuje slika 5.8.

    Slika prikazuje kisikovo in vodikovo jedro. Kisikovo jedro je zaradi večje mase narisano večje. Elastičen trk si ponazorim z vzmetjo, v katero se zaleti vodikovo jedro.

    Ko vodikovo jedro zadane v kisikovo jedro, kinetični energiji njunega trka prevzame vzmet.

    Model na sliki 5.8 je najlažje predstavljiv, če sta v izhodišču energiji vodikovega in kisikovega jedra enaki, kar pomeni, da po tem, ko pride do predaje njunih kinetičnih energij vzmeti, se vodik in kisik za trenutek v celoti zaustavita.

    V času napete vzmeti se vodikovemu jedru zaradi velikega pospeška zmanjša masa. Učinek zmanjšanja mase je predvsem pri hitremu vodikovemu jedru, ki doživlja mnogo večje pospeške kot pri počasnejšemu kisikovemu jedru.

    V prvem delu trka sta obe masi še nezmanjšani, zato ustvarita masam primeren sunek sile F.t. V drugi fazi trka se masa vodikovega jedra zmanjša, kar je na sliki modela prikazano z manjšo površino ploskve, ki prikazuje vodikovo jedro.

    Vzmet bo vso prejeto energijo vrnila vodikovemu in kisikovemu jedru, kar pomeni enak sunek sile v fazi stiskanja vzmeti, kot v fazi raztezanja vzmeti.

    Ker pa je v fazi odriva, vodikovo jedro brez dela svoje mase, ker se mu je za hipec masa zmanjšala, ga bo vzmet odrinila z večjo hitrostjo, kot je bila njegova vpadna hitrost. Hitrost kisikovemu jedru se bo zmanjšala glede na vpadno hitrost, ker mu vodikovo jedro nudi manjši odpor.

    Energijsko stanje

    Dogodi se asimetrični odboj, kjer ob odboju več energije prevzame vodikovo jedro, ki se mu zato hitrost poveča, manj energije pa kisikovo jedro, ki se mu hitrost zmanjša glede na hitrosti pred odbojem.

    Po trku se kisikovo jedro upočasni, zato prevzame manj energije, kot jo je imel pred trkom.
    Tudi vodikovo jedro je deležno manjšega sunka sile, vendar že manjši sunek sile zagotovi večjo hitrost vodikovemu jedru po odboju zaradi trenutno zmanjšane mase.

    Energijska bilanca obeh jeder se kljub povečani hitrosti in energiji vodikovega jedra ne spremeni.

    Gibalna količina

    Asimetričnost odboja pomeni spremembo gibalne količine sistema. Pri navedenem elastičnem odboju se gibalna količina tradicionalno ne ohranja. Popačitve in prerazporejanje enenrgijskih polj v primeru velikih pospeškov ne omogoča ohranjanje gibalne količine sistema.

    Padec hitrega primarnega vesoljskega delca ustvarja plaz sekundarnih vesoljskih delcev.

    Ugotovitev, da se vodikovemu jedru poveča energija ob trku s težjim atomskim jedrom pa zahteva ponovno presojo o količini energije, ki jo s seboj prinašajo primarni vesoljski delci iz vesolja.

    Velika energija, ki jo opazimo ob vstopu teh delcev v naše ozračje v plazu sekundarnih delcev nima izvora le v neznanski hitrosti delca pri vstopu, ampak je posledica zaporednih trkov teh hitrih delcev v našem ozračju.

    Primarni vesoljski delec mora seveda imeti zadostno hitrost in zadostno energijo, da pospešek pri trku s težjim atomskim jedrom v ozračju uspe zadosti deformirati energijsko polje takega delca.

    Neuspeh ni napaka. Napaka je, če odnehamo.

    B. F. Skiner

    Koliko energije opazimo ob vstopu primarnega vesoljskega delca je stvar naključja.

    Če hitri vesoljski delec zadane v jedro atoma v ozračju tako, da se njegova energija poveča in da s to povečano energijo delec naprej zadeva druge delce, ki se ravno tako zaletavajo pod ugodnimi koti za povečevanje njihove energije, to lahko sproži obsežen plaz sekundarnih vesoljskih delcev, ki dosežejo energijske vrednosti, ki jih nikakor ne moremo pripisovati energijskemu stanju enega samega vodikovega atomskega jedra.

    Dogaja se nekaj podobnega, kot če spomladi na travniku zažgemo suho travo. Pogori nekaj kvadratnih metrov trave, potem pa moramo postopek ponoviti. Energija vžigalice ni pomembna za ogenj, ki se bo razvil. Če so ugodni pogoji lahko pride do večjega požara, če teh pogojev ni potem ogenj hitro pogasne.

    Podobno je pri vstopanju hitrih delcev v naše ozračje. Energija, ki se bo razvila v sekundarnem plazu ni odvisna le od energije primarnega vesoljskega delca ampak predvsem od naključij, kako bodo delci med seboj trkali.

    Mora pa seveda primarni vesoljski delec imeti zadosti energije, da je s svojim pospeškom sposoben sprožiti sekundarni plaz.

     

      
     
    | More




    Sorodne povezave
  • Več od avtorja Franc Rozman
  • Več s področja * Poučna (spo)znanja, znanost

  • Dodatne možnosti
  • Pošlji članek prijatelju po e-pošti
  • Za tisk prijazna stran
  • Slabovidnim prijazna stran

  • Trackback

    Trackback URL for this entry: http://www.pozitivke.net/trackback.php/20050709122153223

    No trackback comments for this entry.
    Latentno vesolje 5.del - Masa | 0 komentarjev. | Nov uporabnik
     

    Za komentarje so odgovorni njihovi avtorji. Avtorji spletne strani na komentarje obiskovalcev nimamo nobenega vpliva.


    Na vrh (začetne) strani
     Copyright © 2024 www.pozitivke.net
     Vsa naša koda pripada vam.
    Powered By GeekLog 
    Page created in 0,72 seconds